struka(e): matematika

afina diferencijalna geometrija (lat. affinis: srodan), dio diferencijalne geometrije koji proučava diferencijalno-geometrijska svojstva krivulja i ploha koja ostaju sačuvana pri transformacijama afinih grupa ili podgrupa tj. invarijantnost diferencijalnih invarijanti.

Tako npr. u ekviafinoj ravnini dva vektora a i b imaju invarijantu (a, b), tj. stalnu ploštinu paralelograma koji tvore. Odatle se može pokazati da za svaku krivulju γ = γ (t) različitu od pravca, koja leži u toj ravnini, postoji invarijantni parametar:

\[s=\int_{t_0}^{t}|\dot\gamma,\ddot\gamma|^{\frac13}{\rm d}t,\]

koji se naziva ekviafinim lukom.

Diferencijalna invarijanta:

\[k=(\frac{{\rm d}^2\gamma}{{\rm d}s^2},\frac{{\rm d}^2\gamma}{{\rm d}s^2})\]

naziva se ekviafinom zakrivljenošću.

U ekviafinom prostoru svakoj se trojci vektora a, b, c može pridružiti invarijanta (a, b, c), tj. volumen orijentiranoga paralelepipeda određenog tim vektorima. Tada je ekviafini luk (s) krivulje γ = γ (t) u trodimenzijskom prostoru:

\[s=\int_{t_0}^{t}|\dot\gamma,\ddot\gamma,\dddot\gamma|^{\frac16}{\rm d}t.\] (→ erlangenski program)

Citiranje:

afina diferencijalna geometrija. Hrvatska enciklopedija, mrežno izdanje. Leksikografski zavod Miroslav Krleža, 2013. – 2025. Pristupljeno 2.1.2025. <https://enciklopedija.hr/clanak/afina-diferencijalna-geometrija>.