struka(e): matematika
ilustracija
BESSELOVE FUNKCIJE, grafički prikaz Besselovih funkcija druge vrste
ilustracija
BESSELOVE FUNKCIJE, grafički prikaz Besselovih funkcija prve vrste

Besselove funkcije [bε'səl~] (po Friedrichu Wilhelmu Besselu), funkcije koje se javljaju pri rješavanju Besselove jednadžbe, tj. linearne diferencijalne jednadžbe drugog reda oblika x² y′′ + xy′ + (x² – α²) y = 0.

Ako su rješenja Besselove diferencijalne jednadžbe za x = 0 i za nenegativne cjelobrojne vrijednosti α konačna, nazivaju se Besselove funkcije prve vrste (znak Jα(x)):

Jα(x)=m=0(1)mm!Γ(m+α+1)(x2)2m+α,

gdje je m cijeli broj a Γ gama-funkcija.

Besselove funkcije druge vrste (znak Yα(x) ili Nα(x)) pojavljuju se kad su rješenja Besselove diferencijalne jednadžbe, za x = 0 i za nenegativne cjelobrojne vrijednosti α, beskonačna:

Yα(x)=Jα(x)cos(απ)Jα(x)sin(απ).

Krivulje Besselovih funkcija nalikuju sinusoidama kojima opada amplituda. Koriste se u fizici za opisivanje dvodimenzionalnog titranja kružne membrane, ogiba svjetlosti na kružnoj pukotini i dr.

Citiranje:

Besselove funkcije. Hrvatska enciklopedija, mrežno izdanje. Leksikografski zavod Miroslav Krleža, 2013. – 2025. Pristupljeno 6.4.2025. <https://enciklopedija.hr/clanak/besselove-funkcije>.